

The advanced 1164 reliability test system provides true parallel testing for a wide variety of semiconductor reliability applications at both package and wafer level. The 1164 leverages a unique and scalable architecture in which systems are comprised of modular components; these are configured with system capabilities and capacities to exactly match customer requirements, and allow for easy system expansion and adaptation. Application modules provide accurate source-measurement circuitry for testing a wide variety of reliability test applications and operating ranges. Application modules operate independently from one another and can be used in any combination within a system. The 1164's continuous monitoring system with high sampling rates provides excellent structure behavior detail for any system size or configuration.

Patented Notebook Ovens provide a stable and uniform thermal environment for package testing, in a small footprint to allow a large number of Notebook Ovens per system. Notebook Ovens operate independently from one another for maximum flexibility and test throughput. Proprietary DUT board technology results in reliable long-term high-temperature testing and low cost of ownership. Notebook Ovens also provide the interface point for wafer-level reliability testing.

Full-featured system software provides a flexible and powerful test environment. Statistical analysis software determines failure times based on various user-defined conditions, calculates acceleration model parameters, and predicts lifetimes with confidence intervals.

FEATURES / BENEFITS

Flexibility	Compact, configurable system provides full suite of test applications – EM, SM, BTS, TDDB, SILC, MTTDDB, HCI, and BTI. A single system may run any mix of these applications simultaneously. System performs package-level reliability (PLR) and/or wafer-level reliability (WLR). Independent Notebook Ovens provide many concurrent temperatures for PLR. Full-featured software offers many experiment setup options.
Throughput	Notebook Ovens complete more PLR tests in less time, with independent start/stop times for each sample set. Parallel measurement system completes tests faster. Conductor software provides automated, unattended WLR testing.
Performance	Individual meters per DUT provide continuous monitoring and fast data sampling to characterize DUT behavior in detail and immediately capture breakdown. Parallel measurement system minimizes device relaxation. Precision SMUs provide accurate biases and measurements.

RELIABILITY TEST APPLICATIONS

Test Algorithm	Devices Tested (Partial List)
EM (Electromigration)	Interconnects (lines, vias, bumps, TSVs, pillars)
SM (Stress Migration)	Interconnects (lines, vias, bumps, TSVs, pillars)
BTS (Bias Temperature Stress)	Dielectrics/barriers (ILDs, IMDs, MIMs, TSVs)
TDDB (Time Dependent Dielectric Breakdown)	CMOS transistor gate oxides (NMOS, PMOS)
SILC (Stress Induced Leakage Current)	CMOS transistor gate oxides (NMOS, PMOS)
MTTDDB (Multi Terminal TDDB)	CMOS transistor gate oxides (NMOS, PMOS)
HCI (Hot Carrier Injection)	CMOS/bipolar transistors (NMOS, PMOS, NPN, PNP)
BTI (Bias Temperature Instability) – NBTI	CMOS transistors (PMOS, NMOS)
(Negative BTI) and PBTI (Positive BTI)	

OPERATING PLATFORM

Architecture	Modular system, one or more compact 4Paks per system
	 Up to 16 4Paks in one system – mix and match various types
	• Expand by adding 4Paks
	Four test slots per 4Pak – each slot contains:
	 One independent application module – mix and match various types
	• One independent Notebook Oven – multiple types available
	• One DUT board for package-level reliability (PLR) –or– WLR Interface (with cables to probe card)
	for wafer-level reliability (WLR)
	System framework consisting of User Interface PC, Test Control Unit(TCU) and TCU PC, power
	distribution assembly (PDA), 4Pak communications, stacking, and accessories
	Simultaneously executes in a single system up to 64 simultaneous, autonomous experiments of
	different types, biases and temperatures
Package-Level Reliability (PLR)	230°C, 250°C, 350°C, or 450°C maximum temperature (as determined by selected 4Pak/Oven and
	DUT Board types)
	DUT Boards for 300 or 600 mil DIPs, up to 28 pins
	Standard and custom DUT board designs – multiple types available
Wafer-Level Reliability (WLR)	Interfaces to one or more single site or parallel multi-site probe cards on probe stations with
	thermal chucks
Software	Windows 7 operating system
	Included: Zeus system software to set up and monitor experiments; store, export and graph
	measurement data
	Optional: Conductor software for WLR automation
	Optional: Statistical analysis software for modeling and lifetime prediction – multiple packages

SYSTEM FRAMEWORK

Kit	Notes
User Interface and TCU Kit	Two PCs, LCD monitor, keyboard, mouse
	TCU cabinet, communications cables
	PDA and stacking hardware for up to four 4Paks
	Software, ESD-safe loading platform and accessories
User Interface and TCU Kit with Emergency Off	Two PCs, LCD monitor, keyboard, mouse
(EMO) switch	TCU Cabinet, communications cables
	PDA with EMO and stacking hardware for up to four 4Paks
	Software, ESD-safe loading platform and accessories
Stacking Base Kit	PDA and stacking hardware for up to four additional 4Paks
Stacking Base Kit with EM0	PDA with EMO and stacking hardware for up to four additional 4Paks

4Paks and Notebook Ovens

Each 4Pak includes four Notebook Oven temperature chambers; all Notebook Ovens within a 4Pak are identical (i.e., they have the same maximum temperature). Each 4Pak includes up to four application modules; some modules require different 4Pak power supplies, according to the compatibility matrix below.

4Pak Type	Max Notebook Oven Temp	Supported Application Module Types
250°C Standard	250°C	UHAEM, HAEM, SEM, STDDB, HVTDDB, EVTDDB, AHCI, HVHCI
250°C High Current	250°C	UHAEM, HAEM, SEM, HATDDB STDDB, HVTDDB, EVTDDB, MTTDDB
250°C High Current EM	250°C	UHAEM, HAEM, SEM, HIEM, HATDDB, STDDB, HVTDDB, EVTDDB, MTTDDB
350°C Standard	350°C	UHAEM, HAEM, SEM, STDDB, HVTDDB, EVTDDB
350°C High Current	350°C	UHAEM, HAEM, SEM, HATDDB STDDB, HVTDDB, EVTDDB, MTTDDB
350°C High Current EM	350°C	UHAEM, HAEM, SEM, HIEM, HATDDB, STDDB, HVTDDB, EVTDDB, MTTDDB
450°C Standard	450°C	UHAEM, HAEM, SEM, STDDB, HVTDDB, EVTDDB
450°C High Current	450°C	UHAEM, HAEM, SEM, HATDDB STDDB, HVTDDB, EVTDDB, MTTDDB
450°C High Current EM	450°C	UHAEM, HAEM, SEM, HIEM, HATDDB, STDDB, HVTDDB, EVTDDB, MTTDDB

System test capabilities, operating ranges, and DUT capacities can be configured by selecting a mix of application module types from the list below. Note compatibility with 4Pak types in preceding table.

Module Type	Test Algorithms	DUT Capacity per Module	Application Notes
		(Max per 1164 System)	
5 mA 10 V Ultra High Accuracy EM (UHAEM)	EM, SM	16 (1,024)	For 32 nm and beyond (excellent accuracy for very low currents, high sampling rate)
25 mA 10 V High Accuracy EM (HAEM)	EM, SM	16 (1,024)	For general purpose EM
200 mA 40 V Standard EM (SEM)	EM, SM	16 (1,024)	For general purpose EM
4 A 10 V High Current EM (HIEM)	EM, SM	12 (768)	For 3D IC (high accuracy Wheatstone Bridges for low resistance bumps and TSVs)
40 V 350 mA High Accuracy TDDB (HATDDB)	BTS, TDDB, SILC	48 (3,072)	For thin oxides including HKMG and FinFET (high sampling rate for soft breakdown)
40 V 1 mA Standard TDDB (STDDB)	BTS, TDDB, SILC	64 (4,096)	For general purpose BTS and TDDB
150 V 10 mA High Voltage TDDB (HVTDDB)	BTS, TDDB, SILC	32 (2,048)	For higher-voltage processes
200 V 10 mA Extended Voltage TDDB (EVTDDB)	BTS, TDDB, SILC	32 (2,048)	For higher-voltage processes
12 V 50 mA Multi-Terminal TDDB (MTTDDB)	MTTDDB	24 (1,536)	For thin oxides including HKMG and FinFET (more detail than 2-terminal TDDB)
15 V 100 mA Advanced HCI (AHCI)	HCI, BTI	12 (768)	For general purpose HCI and conventional BTI, including HKMG and FinFET
150 V 100 mA High Voltage HCI (HVHCI)	HCI	6 (384)	For higher-voltage processes

PLR DUT Boards and WLR Interfaces

DUT boards come in two technologies (polyimide for lower-temperature testing and porcelain on steel for higher temperature testing) and support various package sizes according to the table below. Standard (catalog) pinouts are offered – custom pinouts are also available (consult factory).

DUT Board Style	Max Temp	Compatible 4Paks
Polyimide, for 300-/600-mil DIPs up to 28 pins	230°C	250°C 4Paks
Porcelain on steel, for 300-mil DIPs up to 20 pins	450°C	250°C, 350°C and 450°C 4Paks
Porcelain on steel, for 600-mil DIPs up to 24 pins	450°C	250°C, 350°C and 450°C 4Paks
Porcelain on steel, for 600-mil DIPs up to 28 pins	450°C	250°C, 350°C and 450°C 4Paks

WLR interfaces can be configured with multiple cable options to match various single site and multi-site probe cards, and support the same full-module capacity as PLR DUT boards. WLR interfaces are manufactured by Celadon Systems. Both PLR DUT boards and WLR interfaces must match application module types according to this table.

DUT Board or WLR Interface Type	Supported Module Types
EM	UHAEM, HAEM, SEM
HIEM	HIEM
HATDDB	HATDDB
STDDB	STDDB
HVTDDB	HVTDDB, EVTDDB
AHCI	AHCI
HVHCI	HVHCI

PHYSICAL DIMENSIONS

	Approx. Dimensions (H x W x D)	Approx. Weight
Single 4Pak	26in x 11 in x 33in	Up to 215 lb (98 kg)
	(65 cm x 27 cm x 85 cm)	
Stack of up to four 4Paks (with PDA and stacking	73 in x 22 in x 33 in	Up to 955 lb (433 kg)
hardware) – on floor	(185 cm x 55 cm x 85 cm)	
User Interface and TCU Kit – on adjacent desk	19 in x 17 in	
(W x D, not including LCD monitor, keyboard and	(48 cm x 43 cm)	
mouse)		

FACILITY REQUIREMENTS

The 1164 system is connected to AC service in stacks of up to four 4Paks with each stack powered by one PDA. Each PDA receives power from a single, dedicated 50A AC service; the PDAs then provide receptacles to power 4Paks and PCs. For a maximum system of 16 4Paks (with four PDAs), four separate services must be provided; the PCs are powered from any of the PDAs.

AC Service Requirements (per PDA, for up to four 4Paks plus PCs)	192-240 VAC, 50 A, 50/60Hz		
	Single phase, three wire with safety ground		
	NEMA 6-50R receptacle (if using supplied power plug) or hardwire		
	(remove plug)		
	Line conditioner or uninterruptible power system (UPS) is recommended		
	to ensure clean AC power		
Operating Humidity	30% - 50% relative humidity		
HVAC Requirement per 4Pak	11,400 BTU/hr		

REGULATORY COMPLIANCE

CE, SEMI S2, ETL

Warranty*	One year	
Service contracts	Single- and multi-year programs available to suit your needs	

*See Cascade Microtech's Terms and Conditions of Sale for more details.

ORDERING INFORMATION

Consult factory for more detailed specifications, additional options, suitability of configuration for intended usage, part numbers, pricing, and delivery.

© Copyright 2013 Cascade Microtech, Inc. All rights reserved. Cascade Microtech is a registered trademark of Cascade Microtech, Inc. All tother trademarks are the property of their respective owners.

Data subject to change without notice

1164-DS-0913

Cascade Microtech, Inc. Corporate Headquarters toll free: +1-800-550-3279 phone: +1-503-601-1000

email: cmi_sales@cmicro.com

Germany phone: +49-89-9090195-0 email: cmg_sales@cmicro.com

Japan phone: +81-3-5615-5150 email: cmj_sales@cmicro.com

China phone: +86-21-3330-3188 email: cmc_sales@cmicro.com Singapore phone: +65-6873-7482 email: cms_sales@cmicro.com

Taiwan phone: +886-3-5722810 email: cmt_sales@cmicro.com

